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Abstract
Recent divergence in analysing the magnetization processes in isolated
particles between analytical micromagnetics and numerical micromagnetics
has focused on whether it is necessary to use nucleation theory in the analysis.
Complete saturation is the necessary condition for using nucleation theory. A
ferromagnetic elliptical particle can be uniformly magnetized in a large field.
As the field decreases, there exists a nucleation field at which the magnetization
deviates from uniform magnetization. On the contrary, a ferromagnetic cube
can never be saturatedly magnetized in any finite homogeneous field. It is
difficult to apply the theory of a nucleation field of an elliptical particle to a
cubic particle. One practical way to discuss the ‘nucleation’ in a cubic particle
is to supervise the magnetization changes from a positive quasisaturation state
to a negative quasisaturation state, and find what kind of reversal modes appear.
In this paper, a three-dimensional micromagnetics model is implemented
to analyse the magnetization reversal processes in cubic particles at a field
(1.1 × 106 Oe) where the quasisaturation is well developed in a cubic particle.
The sizes of particles vary from 400–1000 Å. A fine mesh with 10 × 10 × 10
and a small decreasing step of applied field 10 Oe are used in the calculations.
The ‘nucleation’ in a cubic particle starts from the quasiquantization state
(flower state). For a particle whose size is smaller than 1000 Å, the equilibrium
magnetization states during magnetization reversal processes are a flower state
and an anti-flower state, and a coherent rotation happens when the magnetization
state changes from a flower state to an anti-flower state. For a larger particle
with a size of 1000 Å, there exist rather complicated equilibrium magnetization
states i.e. a flower state, anticlockwise vortex state, intermediate state, clockwise
vortex state, and anti-flower state all appear during the reversal processes.
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1. Introduction

The theory of micromagnetics using a continuous magnetization vector began with the wall
calculation of Landau and Lifshitz [1]. The origin and principles of the theory were reviewed
and discussed by Brown [2, 3], in which the atomic structure of matter is ignored. Early
applications of micromagnetic modelling on isolated particles were in the area of elliptically
shaped particles, which used the linear Brown equations, and discussed the nucleation problem.
Generally, it is called analytical micromagnetics or classical micromagnetics [4].

It is well known that an elliptical particle can be saturatedly magnetized along its major
axis because the demagnetizing field in it is homogeneous, and this complete saturation is
the necessary condition for using nucleation theory, i.e. an elliptical particle is put into a
magnetic field which is large enough to saturate it. Then the field is reduced slowly. At
some point, the state of saturation along the original direction of the applied field stops being
stable, and some changes start to take place. This field is called the nucleation field, and
the corresponding magnetization distribution is called the nucleation mode or magnetization
reversal mode. Usually they are the coherent rotation mode, curling mode, or buckling mode.

In the middle of the 1960s, Brown started to solve the micromagnetics problem (one-
dimensional domain wall) by computer simulation [5], and this method was developed by
Labonte to solve two-dimensional Bloch-type domain walls [6]. In these calculations, four
kinds of energy (exchange energy, crystalline energy, demagnetizing energy and Zeeman
energy) are considered and the minimization of the total free energy is achieved by rotating the
magnetization vector in each mesh element to the effective field with the aid of the computer,
and yields both the hysteresis loops and the magnetization distributions. Compared with the
classical micromagnetics, the calculation of magnetization problems in magnetic materials in
the above two papers start from the minimization of free energy by computer, not from the
Brown equations. Usually we call this numerical micromagnetics.

Numerical micromagnetics has developed very rapidly over the past decade as high
performance computers became available. Numerical micromagnetics is especially suited for
solving thin film problems, but meets some opposite opinions in dealing with ferromagnetic
nonelliptical fine particles. The main divergence between analytical micromagnetics and
numerical micromagnetics is in focusing on whether it is necessary for us to use nucleation
theory in numerical micromagnetics, especially in the calculation of nonelliptical particles,
such as prisms [7–9]. As discussed above, there are two premises in using nucleation theory:

(i) the demagnetizing field is homogeneous in a particle,
(ii) the particle is saturatedly magnetized.

Since a cubic particle cannot be saturated in any finite, homogeneous magnetic field, and its
demagnetizing field is also inhomogeneous, most research ignored nucleation theory in this
kind of calculation, and the starting point of calculations of the magnetization reversal process
was selected randomly (usually a relatively small applied field is used in these calculations).
So the results in these papers were questioned by some theorists.

In this paper, we re-calculate the magnetization processes in cubic particles by using
Aharoni’s suggestion [9], i.e. computations start at a field where the quasisaturation is well
developed in a cubic particle, which is not very different from the requirement for starting
computations for an ellipsoid from a completely saturated state. But one thing should be
emphasized no matter how large the applied field is: the ‘nucleation’ in a cubic particle starts
from a state in which the magnetization changes continuously with the changing applied field.
So we cannot get a distinct nucleation field as in an elliptical particle. But we can supervise
and record the changes of the magnetization distributions during the magnetization reversal
processes and find what kind of reversal modes appear during the reversal processes.
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Figure 1. A cubic particle and its discretization procedure. D is the particle size.

Figure 1 shows a cubic particle and its discretization procedure. D labels the particle
size. The easy crystalline axis of the particle is assumed to be along the z direction. The
material parameters in this paper are the same as those of the earlier paper [10]. The
particles are assumed to have uniaxial crystalline anisotropy with an anisotropy constant
K1 = 18 500 erg cm−3, a saturation magnetization Ms = 370 emu cm−3 and an exchange
constant of A = 10−6 erg cm−1, which gives the exchange length lex = √

A/M2
s = 270 Å in

this paper. Recent calculations show the size of the subdivisions should not be larger than the
exchange length of the materials [11]. In this paper, seven particles with sizes 400, 550, 600,
700, 800, 900 and 1000 Å are selected in the computations. Compared with the maximum size
of a particle, D = 550 Å, in [10], we use a particle with maximum size D = 1000Å, because
the same magnetization reversal processes were found in a particle whose size is smaller than
1000 Å if the computation starts from quasisaturation state. A fine mesh of 10 × 10 × 10 is
used in the following calculations.

2. Numerical model

The micromagnetics model of Schabes and Bertram is followed whereby the particles are
discretized into cubic elements in which each cell has a uniform magnetization. The total free
energy Etot in a cubic particle is the sum of four contributions:

Etot = Eapp + Ean + Eex + Emag (1)

where Eapp is the Zeeman energy describing the interaction of the particle magnetization
with an applied field, Ean is the magnetocrystalline anisotropy energy, Eex is the exchange
energy and Emag is the magnetostatic interaction energy. Writing the magnetization vector as
�M = Ms(α�i + β �j + γ �k) and the applied field as �Happ, the Zeeman energy is given as

Eapp = −Ms

∫
v

(α�i + β �j + γ �k) · �Happ dv (2)

where v indicates integration over the volume of the particle, the applied field and the
magnetization can be spatially varying. α, β and γ are directional cosines of the magnetization.

The crystalline anisotropy is treated phenomenologically by writing

Ean =
∫

v

Wu dv (3)
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where Wu is an expression of the local crystalline energy density in terms of the directional
cosines of the magnetization. For the uniaxial case with easy axis along the z direction,
Wu = K1 sin2 θ , K1 is the anisotropy constant and θ is the angle between the z direction and
the direction of the magnetization.

The exchange interaction is a quantum mechanical effect and the exchange energy is given
by

Eex =
∫

v

A[(∇α)2 + (∇β)2 + (∇γ )2] dv (4)

where A is the exchange constant.
The magnetostatic interaction energy may be written as

Emag = − 1
2

∫
v

�Hd · �M dv (5)

where �Hd is the demagnetizing field from �Hd = −∇U and can be calculated from
magnetostatic volume and surface charges.

The equilibrium state of a particle during magnetization reversal processes at a specific
applied field corresponds to a minimum of the free energy, expressed by the vanishing at all
points of the torques �T = �M × �Hef f exerted on the magnetization in each element, where
�Hef f is the effective field, which is defined as

�Hef f = −∂ Etot/∂ �M (6)

and can be written as

�Hef f = �Happ + �Hk/Ms (�k · �M)�k + 2A/M2
s ∇2 �M +

∑
j

N · �M j (7)

where �Happ is the applied field, Hk = 2K1/Ms is the uniaxial magnetocrystalline anisotropy
field and N is the demagnetizing field tensor. The magnetostatic field involves a sum over all
pairwise interactions.

The method for energy minimization is the same as that of Brown and LaBonte’s
schemes [5, 6]. The magnetization vector in each subdivision is rotated in the direction of
�Hef f at that position, after sweeping through all the subdivisions. The maximum angle of

this rotation in any of the subdivisions is compared with a preset tolerance ε1. The process
of rotating the set of magnetization vectors point by point throughout the grid is continued
until this maximum angle is small than the required tolerance. Equilibrium is denoted by the
magnetization in each subdivision aligning with the effective field at every point. In this paper
ε = 10−4 is selected in the calculations.

3. Results and discussions

In theory, if a cubic particle can be magnetized into a saturation state along the z direction,
the normalized magnetization vector �m = �M/Ms in each subdivision has the relationship
ε2 = | �m(i, j, k)−�k| = 0, where �k is the unit vector in the z direction. In practical calculations,
different tolerances ε2 = 10−1, 10−2, 10−3, 10−4 are used to find different maximum values
of the applied fields. In order to keep the cubic particles quasisaturatedly magnetized, as well
as to save computation time, ε2 = 10−3 is selected and the corresponding maximum value of
the applied field Happ = 1.1 × 106 Oe is used in the following calculations.

As mentioned above, the magnetization states will change with the changing applied field
in a cubic particle if it is quasisaturatedly magnetized. So the calculations were supervised
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for each particle during the magnetization reversal processes from Happ = 1.1 × 106 to
−1.1 × 106 Oe, and the magnetization distributions at some points are recorded.

Figure 2 shows the 2D magnetization distributions for D = 400 Å in different layers
along the z direction at a remanant state. The vector in each mesh element represents the
projection of magnetization in the corresponding subdivision onto the xy plane. A long arrow
in a subdivision means the magnetization in this element tilts more towards the xy plane.
From figure 2, we know that the angles between a magnetization and the z direction decrease
from the first layer to the fifth layer, and then increase from the fifth layer to the tenth layer.
This process is similar to the opening process of a flower, and is thus called a flower state
in [6], and has been widely adopted in recent micromagnetic simulations to describe the
equilibrium magnetization state in nonelliptical particles. We have checked the cubic particle
has a flower equilibrium magnetization state even if it is quasisaturatedly magnetized in a large
applied field, and this flower state remains in the particle as the applied field decreases from
1.1 × 106 to −1730 Oe, where the magnetizations in all subdivisions start coherent rotation
from the positive magnetization direction to the negative magnetization direction. The typical
2D and 3D magnetization distributions of the first and tenth layers at Happ = −1730 and
−1740 Oe are shown in figure 3. The direction of arrows in the 3D figures are parallel to
the z direction which is in a direction out of the paper for Happ = −1730 Oe and into the
paper for Happ = −1740 Oe. A blank square in the 3D figures represents an arrow which
points into the paper, and we see the bottom of the arrow. From figure 3, we can conclude:
(1) a coherent rotation takes place in the particle as the applied field increases from −1730
to −1740 Oe, and (2) the magnetization distributions in the particle keep the flower states at
−1730 and −1740 Oe, but have different characteristics: the flower state closes at the first
layer and opens at the tenth layer at Happ = −1730 Oe (starting point of coherent rotation).
After coherent rotation, the flower state opens in the first layer and closes in the tenth layer
at Happ = −1740 Oe (ending point of coherent rotation). Here we define them as a flower
state and an anti-flower state, respectively. As the applied field increases in the negative
direction further from Happ = −1740 Oe, the particle will keep the anti-flower state until it is
quasisaturatedly magnetized in the negative direction again. As a typical case, figure 4 shows
the magnetization distributions of the anti-flower state in different layers along the z direction
at Happ = −2000 Oe. We should emphasize that the coercivity field H c = 1735 Oe for a
particle with size D = 400 Å obtained in this paper is much larger than that in [10], which
started the calculation from a relatively small applied field.

Figures 5 and 6 show the magnetization distributions in a particle with size D = 550 Å.
The particle keeps a flower state from Happ = 1.1 × 106 to −880 Oe. Then a coherent
rotation takes place and the particle enters into an anti-flower state from Happ = −890 Oe
and keeps this state till Happ = −1.1 × 106 Oe. Compared with the result of D = 400 Å,
the flower state and the anti-flower state are more obvious at the starting and ending points
of the coherent rotation. The coercivity field Hc = 885 Oe in this paper is also much larger
than that in [10], which is no larger than 100 Oe, and no vortex magnetization state is found
in this paper during magnetization reversal processes from a positive quasisaturation state to a
negative quasisaturation state. While in [10], the vortex state appears at a remanant state.

Our calculations show that the pattern of magnetization equilibrium configurations,
i.e. flower state → coherent rotation → anti-flower state, remains in a particle during the
magnetization reversal processes if the particle size is smaller than 1000 Å. The calculation
results for particles with D = 600, 700, 800 and 900 Å are the same as those for D = 400 and
550 Å and are omitted here.

Figures 7 and 8 show the equilibrium magnetization distributions in a particle in the bottom
layer (first layer) and the top layer (tenth layer) along the z direction at different applied fields
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Figure 2. The 2D magnetization distribution for D = 400 Å in different layers along the z direction
at a remanant state.
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Figure 3. The 2D and 3D magnetization distributions for D = 400 Å in the first and tenth layers
along the z direction at different applied fields.
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Figure 4. The 2D magnetization distribution for D = 400 Å in different layers along the z direction
at Happ = −2000 Oe.
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Figure 5. The 2D magnetization distribution for D = 550 Å in different layers along the z direction
at a remanant state.
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Figure 6. The 2D and 3D magnetization distributions for D = 550 Å in the first and tenth layers
along the z direction at different applied fields.
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Figure 7. The 2D magnetization distributions for D = 1000 Å in the first layer along the z direction
at different applied fields.
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Figure 8. The 2D magnetization distributions for D = 1000 Å in the tenth layer along the z
direction at different applied fields.
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with particle size D = 1000 Å. A more complicated magnetization distribution is found in
the particle during magnetization reversal processes from a positive quasisaturation state to a
negative quasisaturation state. They can be divided into five steps:

(1) From Happ = 1.1 × 106 to 100 Oe, the equilibrium magnetization distribution is a flower
state. A typical figure at Happ = 150 Oe is shown in figures 7 and 8.

(2) From 90 to 80 Oe, the magnetization distribution suddenly changes from a flower state
into an anticlockwise vortex state. A typical figure at Happ = 90 Oe is shown.

(3) From 70 to −160 Oe, the magnetization distribution is very new, which has not been
reported in the previous papers. This state is an intermediate state, which ends the
anticlockwise vortex state, and starts a clockwise vortex state. Typical figures at
Happ = 0 Oe (remanant state) and −100 Oe are shown.

(4) From −170 to −750 Oe, the magnetization distribution enters into a clockwise vortex
state. Typical figures for Happ = −180, −210 and −450 Oe are also given.

(5) From −760 to −1.1 × 106 Oe, the clockwise vortex state ends and the particle keeps an
anti-flower state until quasisaturatedly magnetized in the negative direction of the applied
field. A typical figure for Happ = −850 Oe is shown in figures 7 and 8.

4. Conclusions

We have calculated the magnetization reversal processes in cubic particles from a quasisaturated
state by using a three-dimensional micromagnetics model with a fine mesh and small decreasing
steps in the applied field. The equilibrium magnetization states in a cubic particle from positive
quasisaturation states to negative quasisaturation states are supervised and recorded. For a
particle whose size is smaller than 1000 Å, the pattern of magnetization reversal processes
can be simply expressed as: flower state → coherent rotation → anti-flower state. For a
particle with size 1000 Å, this pattern of magnetization reversal processes can be described as:
flower state → anticlockwise vortex state → intermediate state → clockwise vortex state →
anti-flower state. The coercivity fields obtained in this paper are much larger than those in the
corresponding literature.
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